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Abstract

Previously the author developed a package of Fortran subroutines to perform a variety of

arithmetic operations and transcendental functions on floating point numbers of arbitrarily

high precision. This package is in some cases over 200 times faster than that of certain

other packages that have been developed for this purpose.

However, as with other such packages, manually converting a program to use the au-

thor's routines is a tedious and error-prone process. To facilitate such conversions, the

author has developed a translator program. By means of source directives (special com-

ments), the user declares the precision level and specifies which variables in each program

unit are to be treated as multiprecision. The translator program reads this source program

and outputs a program with the appropriate multiprecision subroutine calls.

This translator program supports multiprecision integer, real and complex data types.

The required array space for multiprecision data types is automatically allocated. In the

evaluation of computational expressions, all of the usual conventions for operator prece-

dence and mixed mode operations are upheld. Furthermore, most of the Fortran-77 intrin-

sics, such as ABS, MOD, NINT, C0S, EXP are supported and produce true multiprecision

values.

The author is with the NAS Applied Research Branch, NASA Ames Research Center,

Moffett Field, CA 94035. E-mail: dbailey©nas.nasa.gov.



O. Introduction

The author's MPFUN package is a suite of Fortran subroutines that perform arithmetic

on floating point numbers of arbitrarily high precision. It is described in detail in [1].

MPFUN routines are available to perform the four basic arithmetic operations between

MP numbers, to compare MP numbers, to produce the integer and fractional parts, to

produce a random MP number and to perform binary to decimal and decimal to binary

conversion. Some higher level routines sort MP numbers; perform complex arithmetic;

compute square roots, cube roots, n-th powers, n-th roots, and _r; evaluate the functions

exp, log, cos, sin, cosh, sinh, inverse cos and sin; find the real or complex roots of polyno-

mials; and find integer relations in real vectors.

Computations on large integers can also be efficiently performed using this package by

setting the working precision level two or three words higher than the largest integer that

will be encountered (including products).

One key feature of the MPFUN package is that it was written with a vector supercom-

puter or RISC floating point computer in mind from the beginning. Virtually all inner

loops are vectorizable and employ floating point operations, which have the highest per-

formance on these systems. As a result, MPFUN exhibits excellent performance on such

systems.
Another distinguishing feature of the MPFUN package is its usage of advanced al-

gorithms. For many functions, both a "basic" and an "advanced" routine are provided.

The advanced routines employ advanced algorithms and exhibit superior performance for

extra-high precision (i.e. above about 1000 digit) calculations. For example, an advanced

multiplication routine is available that employs a fast Fourier transform (FFT), and rou-

tines implementing the new Borwein quadratically convergent algorithms for exp and log

are also provided.

1. An Automatic Multiprecision Translator

Conversion of a conventional scientific application program to use the MPFUN routines

is generally straightforward, but it is often tedious and error prone. For example, if the

slightest error is made in any of the arguments to the many subroutine calls, not only will

the results be in error, but the program may abort with little information to guide the

programmer. As a result of these difficulties, few serious scientific programs have yet been

converted to use the MPFUN routines. Similar difficulties have plagued programmers who

have attempted to use other multiprecision systems, such as Brent's package [4].

To facilitate such conversions, the author has developed a translator program that

accepts as input a conventional Fortran-77 program to which has been added certain special

comments that declare the desired level of precision and declare certain variables in each

program unit to be treated as multiprecision. This translator then parses the input code

and generates an output program that has all of the calls to the appropriate MPFUN

routines. This output program may then be compiled and linked with the MPFUN package

for execution.

This translation program allows one to extend the Fortran-77 language with the data



types MULTIP INTEGER, MULTIP REAL and MULTIP COMPLEX. These data types can be used

for integer, floating point or complex numbers of an arbitrarily high but pre-specified

level of precision. Variables in the input program may be declared to have one of these

multiprecision types in the output program by placing directives (special comments) in the

input file. In this way, the input file remains an ANSI Fortran-77 compatible program and

can be run at any time using ordinary arithmetic on any Fortran system for comparison

with the multiprecision equivalent.

This translator supports a large number of Fortran-77 constructs involving multipreci-

sion variables, including all the standard arithmetic operators, mixed mode expressions,

automatic type conversions, comparisons, logical IF statements (including IF-THEN-ELSE

constructs), function calls, READ and WRITE statements and most of the Fortran intrinsics

(i.e. ABS, MOD, COS, EXP, etc.). Storage is automatically allocated for multiprecision

variables, including temporaries, and the required initialization for the MPFUN package

is automatically performed.

This processor translates programs to use the standard MP routines from the author's

MPFUN package. If one wishes to utilize this translator in connection with the extra-high

precision routines of this package, which are designed for precision levels greater than about

1,000 digits, contact the author for instructions.

2. Operation of the Translator Program

This translator program should run on any Fortran-77 system that supports recursive

subroutine references. On some systems, including Sun and IBM workstations, a minor

source modification and/or a special compiler option must be enabled to permit this recur-

sion. A test program is available to determine whether the translator is working correctly

on a given system.

The translator is in effect a compiler in the sense that it identifies and analyzes every

input statement. It develops a symbol table that contains type and dimension information

for all variables used in a program unit. A number of Fortran statements, such as DO,

CONTINUE and OPEN statements, are not modified by the translator. Most other types

of statements are analyzed in detail, including type declarations, IMPLICIT, COMMON,

DIMENSION, PARAMETER, READ, WRITE and CALL statements, as well as all assignment

statements.

If any input statement is modified or translated, the original statement is included in

the output file as a comment, starting with the string CMP>. The comment CMP< is placed

after the translated lines. Warnings and error messages are also written in the output file.

Warnings are issued as comments starting with CMP*. Fatal error messages start with ***.

When a fatal error is detected, the message is output on the output file, and processing is

terminated. Thus to make sure that the translation of an input program was successful,

check the end of the output file to make sure there is no fatal error message. It is also

strongly recommended that the output program be scanned for CMP* warning messages

before it is compiled and executed.
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3. Basic Instructions for Usage

These data type abbreviations will be used hereafter in this paper:

IN

SP

DP

CO

DC

MPI

MPR

MPC

MP

Integer

Single precision real

Double precision real

Single precision complex

Double precision complex (non-ANSI extension of Fortran-77)

Multiprecision integer

Multiprecision real

Multiprecision complex

Denotes the three multiprecision types collectively

AMP statement will be defined as a statement that has at least one MP variable. AMP

program unit will be defined as a program unit with at least one MP variable.

At the beginning of a file containing a conventional Fortran-77 code to be translated,

before any program or subroutine statement, a directive (i.e. special comment) of the

following form must be inserted:

CMP+ PRECISION LEVEL 120

This denotes that the maximum precision level to be employed in this program is 120 digits.

Only one such declaration is allowed in a single file, and Fortran-77 files whose translated

routines later will be linked together must have equivalent precision level declarations. This

directive must precede any of the other CMP+ directives to be described below.

Variables in a subprogram of the input Fortran-77 program file that are to be treated

as MP by the translator program are declared by one or more MP type directives such as

the following:

CMP+ MULTIP INTEGER IA, IPR, MODDT_

CMP+ MULTIP REAL SUM, TL, X, Y

CMP+ MULTIP COMPLEX W, ZAB

AMP variable must be declared in a MP type directive prior to any appearance of that

variable in the subprogram, including any appearance in a type declaration, DIMENSION

or COMMONstatement. An exception to this rule is that MP variable names'appearing in

the argument list of a FUNCTION or SUBROUTINE statement may be afterwards declared.

However, if the function name of a function subprogram is to have a MP type, this name

must be declared with a MP type directive immediately preceding the FUNCTION statement.

The dimensions for a MP variable are not included in the MP type directive- they will

be taken from the standard type declaration, DIMENSION or COMMONstatement where these

dimensions are defined in the original program.
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4. The SAFE and FAST Options

Expressions involving MP variables and constants are evaluated using the operator

precedence conventions of Fortran-77, and using predictable extensions of the Fortran-

77 mixed mode conventions. There are two options for the evaluation of mixed mode

operations: FAST and SAFE. The difference between these conventions may be seen with

the following example, where A and B are MPR and N is an ordinary integer variable:

B = A ÷ 1.DO / N

With the FAST option, the subexpression 1.D0 / N is evaluated using DP arithmetic, and

the result temporary has type DP. With the SAFE option, which is the default, 1 .DO / N

is performed using MP arithmetic, and the result temporary has type MPR. As the name

signifies, the FAST option produces somewhat more efficient translated code, but it may

also give unexpectedly inaccurate answers, for instance if N in the above example has the

value 7.

An exception to the SAFE option is in the argument lists of subroutine calls or non-

intrinsic function references. Expressions appearing in these lists are always evaluated

using the FAST option, since this corresponds more closely to the Fortran convention that

most users expect. Thus in the statement

B = 3 * FUN (N - I, A)

the subexpression N - 1 is Mways evaluated using ordinary integer arithmetic, and the

result temporary has type IN.

The user may switch between these options by inserting one of the following directives

in the declaration section of any program unit.

CMP+ MIXED MODE FAST

CMP+ MIXED MODE SAFE

For the operators + - * /, Tables 1 and 2 give the types .of results with these two

options. Table 3 lists the argument types and results defined for the ** operator. In Table 3,

if a particular combination is not listed, or if its position in the table is blank, then it is not

defined. Comparison operations (i.e.. Eq., . LT., etc.), where one or both of the operands

are MP, are permitted both in logical IF statements and in logical assignment statements.

If one of the operands has type CO, DC or MPC, only .EQ. and .NE. cotnparisons are

permitted.

5. Multiprecision Constants

With the SAFE option, all IN constants appearing in MP statements are considered MPI

constants and are converted to full precision, and all SP or DP constants in MP statements

are considered MPR constants and are converted to full precision.

With the FAST option, IN, SP and DP constants are recognized and treated as such

by the translator -- they are merely passed unchanged to the output program and are



Arg. 1 / Arg. 2 IN

IN

SP

DP

CO

DC

MPI

MPR

MPC

SP DP CO DC

IN SP DP CO DC

SP SP DP CO DC

DP DP DP DC DC

CO CO CO CO DC

DC DC DC DC DC

MPI MPR MPC

MPI MPR MPC

MPR MPR MPC

MPR MPR MPC

MPC MPC MPC

MPC MPC MPC

MPI MPR MPR MPC MPC MPI MPR MPC

MPR MPR MPR MPC MPC MPR MPR MPC

MPC MPC MPC MPC MPC MPC MPC MPC

Table 1: Results of Mixed Mode Arithmetic Operations with the FAST option

Arg. 1 / Arg. 2

IN

SP

DP

CO

DC

MPI

MPR

MPC

IN SP DP CO DC MPI MPR MPC

MPI MPR MPR MPC MPC MPI MPR MPC

MPR MPR MPR MPC MPC MPR MPR MPC

MPR MPR MPR MPC MPC MPR MPR MPC

MPC MPC MPC MPC MPC MPC MPC MPC

MPC MPC MPC MPC MPC MPC MPC MPC

MPI MPR MPR MPC MPC MPI MPR MPC

MPR MPR MPR MPC MPC MPR MPR MPC

MPC MPC MPC MPC MPC MPC MPC MPC

Table 2: Results of Mixed Mode Arithmetic Operations with the SAFE option (default)
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Arg. 1 Arg. 2
IN
IN or SP
IN, SPor DP
IN, SP or CO
IN, SP,DP, CO or DC

IN
SP
DP
CO
DC
MPI
MPR
IN
SP
DP or DC
IN
SP,DP, CO or DP
IN or MPI
SP,DP or MPR
IN, SP,DP, MPI or MPR
IN

IN
IN, SP or DP
CO
CO
CO
DC
DC
MPI
MPI
MPR
MPC

Result
FAST ISAFE

IN MPI

SP MPR

DP MPR

CO

DC

MPI MPI

MPR MPR

CO MPC

CO

DC

DC MPC

DC

MPI MPI

MPR MPR

MPR MPR

MPC MPC

Table 3: Defined Combinations for the ** Operator
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converted to binary by the underlying Fortran system. For modest sized whole numbers

and exact binary fractions, these constants are converted exactly and produce accurate

results when they appear in expressions with MP variables. However, SP or DP constants

that cannot be precisely converted (i.e. 1.01D0), or IN, SP or DP constants that have

more significant digits than can be exactly accommodated in these datatypes, may result

in inaccurate MP calculations.

To avoid such difficulties with the FAST option, the user may explicitly specify that a

constant in the input program will be treated as a MP constant for the output program.

This is done by appending +0 to the constant, as in the following examples:

3+0
-12345678901234567890+0

3.141592653589793+0
1.2345678901234567890D-13+0

The first two constants have type MPI, and the last two have type MPR. Embedded blanks

are allowed anywhere in these constants, including before and after the plus sign. MP

constants must appear in a context where the plus operation would actually be performed

between the two components of the MP constant if interpreted according to the standard

Fortran rules for evaluating expressions. For example, the expression N*12345+0 is not

treated as contMning a MP constant. Write this as N*(12345+0) instead. MP constants

are recognized as such only in MP statements.
There is no definition of this sort for MPC constants, but MPC constants may be

defined by using the special conversion function DPCI.IPL (see section 6), where the two

arguments are MPR constants.

MP constants may be defined symbolicMly using PARAMETER statements. The parameter

assignment expression for a MP variable may reference previously defined MP and non-MP

parameters, and it may Mso include intrinsic function references. All such assignments are

performed upon entry to the program unit the first time it is called.

6. Intrinsic Functions

Table 4 lists Fortran intrinsic functions that are supported by this translator with

MP arguments. References to these functions will be automatically translated to call the

appropriate routine(s) from the MPFUN package, provided the argument(s) is(are) of the

appropriate MP type. If the SAFE option is in effect, non-MP arguments are first converted

to MP, so that MP results are Mways returned. If the user requires either a function not

listed here or a function with an argument type not listed here, contact the author.

Note in Table 4 that the "conversion" intrinsics of Fortran-77, namely INT, CMPLX,

DBLE, DCMPLX and REAL, return types IN, CO, DP, DC and SP, respectively, even though

the arguments have MP types. This is in keeping with the conventions of Fortran-77. If one

wishes to truncate a MPR number to MPI, form a MPC number from two MPR numbers,

or extract the MPR real and imaginary components of a MPC number, one of the special

functions in Table 5 should be used instead. These functions are not defined for ordinary



Function Arg. 1 Arg. 2 Result
ABS

ACOS

hINT

ANINT

ASIN

ATAN

ATAN2

CMPLX

CONJG

COS

COSH

DBLE

DCMPLX

EXP

INT

LOG

LOGIO

MAX

MIN

MOD

NINT

REAL

SIN

SINH

SQRT

TAN

TANH

MPI

MPR

MPC

MPR

MPR

MPR

MPR

MPR

MPR

MPC

MPC

MPR

MPR

MPI

MPR

MPC

MPC

MPR

MPI

MPR

MPC

MPR

MPR

MPI

MPR

MPI

MPR

MPI

MPR

MPI

MPR

MPI

MPR

MPC

MPR

MPR

MPR

MPC

MPR

MPR

MPR

MPI

MPR

MPI

MPR

MPI

MPR

MPI

MPR

MPR

MPR

MPR

MPR

MPR

MPR

MPR

CO

MPC

MPR

MPR

DP

DP

DP

DC

MPR

IN

IN

IN

MPR

MPR

MPI

MPR

MPI

MPR

MPI

MPR

MPI

MPR

SP

SP

SP

MPR

MPR

MPR

MPC

MPR

MPR

Table 4: Fortran Intrinsics Supported with MP Arguments
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SP,DP, CO or DC argumentsin the translatedprogram(althoughthey maybe in the input
program). Thus, for example,DPREALcannot be usedto convert a DP number to MPR.
Type conversionssuchas this canbe performedeither by simple assignmentstatements,
or by defining an external MP function.

To preservecomparablefunctionality betweenan input Fortran-77 program that uses
oneof thesefour specialconversionfunctions and the output MP program, equivalentSP
or DP functions shouldbe includedin the input programasuser-definedsubprograms(not
as statement functions). Table 6 has someexamplesof equivalentdefinitions for these
functions that useDP and DC data types. If your programusesordinary SPand CO data
types instead,thesedefinitions needto be changedaccordingly.

Do not placeany MP directivesin thesefunction subprograms.If anothersubprogram
referencesoneof thesefunctions, it shoulddeclarethe argumentand function namesto be
of the appropriate types, correspondingto the function definitions. However,the names
MPINT,DPCMPL,DPREALand DPIMAGdonot needto be declaredwith MP type directives
in the program units where they are referenced.In the output program, MP results will
be automatically be returned with types accordingto Table5.

With the FASToption, non-MP argumentsto intrinsic functions appearingin MP state-
mentsarepassedwithout changeto the non-MP intrinsic functions. Fornon-MP arguments
the translator recognizesthe following "generic" intrinsic function namesand assignsresult
types accordingto argument types,in accordancewith the standard Fortran conventions:

ABS, ACOS, AINT, AIMAG, ANINT, ASIN, ATAN, ATAN2, CHAR, CMPLX, CDNJG,

COS, COSH, DBLE, DCMPLX, DIM, DIMAG, DREAL, EXP, ICHAR, INDEX, INT, LEN,

LOG, LOGIO, MAX, MIN, MOD, NINT, REAL, SIGN, SIN, SINH, SQRT, TAN, TANH.

Note that this list does not include type-specific variants such as IABS and AM[3D. Convert

specific names such as these to the generic name in above list, or else include the specific

function name in a conventional type statement at the beginning of the subprogram.

7. Other Special Functions and Constants

In many instances where COS or SIN is referenced, both are actually required for the

same argument. Since MPCSSN, the MPFUN routine that evaluates COS or SIN for a MPR

argument, actually returns both in a single call, it is preferable for the input DP code to

have an analogous design. Thus it is recommended that input code which references C0S

and SIN be changed to reference a subroutine DPCSSN, which may be written as follows for

DP data. If your code uses the SP data type, this definition should be changed accordingly.
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Function Arg. 1 Arg. 2 Result

MPINT

DPCMPL

DPREAL

DPIMAG

MPR

MPR

MPC

MPC

MPR

MPI

MPC

MPR

MPR

Table 5: Special MP Conversion Functions

FUNCTION MPINT (X)

DOUBLE PRECISION X

MPINT = INT (X)

RETURN

END

FUNCTION DPCMPL (A, B)

DOUBLE COMPLEX DPCMPL

DOUBLE PRECISION A, B

DPCMPL = DCMPLX (A, B)

RETURN

END

FUNCTION DPREAL (C)

DOUBLE PRECISION DPREAL

DOUBLE COMPLEX C

DPREAL = DBLE (C)

RETURN

END

FUNCTION DPIMAG (C)

DOUBLE PRECISION DPIMAG

DOUBLE COMPLEX C

DPIMAG = DIMAG (C)

RETURN

END

Table 6: DP Equivalents of the Special Conversion Functions
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SUBROUTINE DPCSSN (A, X, Y)

DOUBLE PRECISION A, X, Y

X = COS (A)

Y = SIN (A)

RETURN

END

The analogous DP subroutine name recognized for the hyperbolic functions COSH and SINH

is DPCSSH.

Another operation of this nature is root extraction, i.e. B = A ** (1.D0 / N), for

which the efficient routine MPNRT exists in the MPFUN package. Thus it is recommended

that any code in the input program that performs root extraction using the ** operator

be changed to reference the function DPNRT instead, i.e. B = DPNRT (A, N), where DPNRT

may be written as follows for DP data. If the SP data type is used instead, this definition

should be changed accordingly.

FUNCTION DPNRT (A, N)

DOUBLE PRECISION A, DPNRT

DPNRT = A ** (1.DO / N)

RETURN

END

One additional special function that many users may find useful produces pseudoran-

dom MPR numbers. The routine MPRAND in the MPFUN package generates pseudorandom

numbers uniformly in the range (0, 1). To access this routine by means of the translator,

one references the special function DPRAND. This function has no arguments -- one refer-

ences it by means of statements such as A = 3 * DPRAND (). It is not possible to write a

completely equivalent DP version of this routine. However, the basic pseudorandom num-

ber functionality can be reproduced by means of a simple routine such as the one shown

in Table 7.

The sample program definitions listed above for DPCSSN, DPCSSH, DPNRT and DPRAND,

like those for the special conversion intrinsics mentioned in section 6, are only for the

purpose of providing comparable functionality when the input program is run with ordinary

arithmetic. Do not place any MP directives in any of these subprograms. If another

subprogram references either DPNRT or DPRAND, it should declare the function name to

be of the appropriate type (DP in the examples above). However, the names DPNRT and

DPRAND do not need to be declared with a MP type directive in program units that reference

them.

The constants log2 = 0.69314..-, logl0 = 2.30258-.- and _r = 3.14159.-- are com-

puted in the program initialization and are available in any subprogram that contains MP

variables. These values may be referenced by the user by means of the special variable

names DPL02, DPL10 and DPPIC. Whenever any of these names appears in a statement,

this translator substitutes the MP value. Any subprogram that references any of these

12



C

C

C

C

C

C

FUNCTION DPRAND ()

This routine returns a pseudorandom DP floating number nearly uniformly

distributed between 0 and I by means of a linear congruential scheme.

2"28 pseudorandom numbers with 30 bits each are returned before repeating.

IMPLICIT DOUBLE PRECISION (A-H, O-Z)

PARAMETER (F7 = 78125.D0, R30 = 0.5DO ** 30, T30 = 2.DO ** 30)

SAVE SD

DATA SD/314159265.DO/

T1 = F7 * SD

T2 = AINT (R30 * TI)

SD = T1 - T30 * T2

DPRAND = R30 * SD

RETURN

END

Table 7: Suggested DP Equivalent of the Special Function DPRAND

parameters must declare it to be DP and must set its DP value in a parameter statement.

Example:

DOUBLE PRECISION DPPIC

PARAMETER (DPPIC = 3.141592653589793D0)

This parameter statement will be ignored in the output program, and the MP value will

be used instead. The names DPL02, DPL10 and DPPIC do not need to be declared with a

MP type directive. Do not attempt to define any of these values by means of assignments

or function calls.

8. Input and Output of MP Numbers

MP variables may appear in READ or WRITE statements with the following two special

forms:

WRITE (6, *) VARI, VAR2(I), VAR3(I,J)

READ (11) VAR1, VAR2, VAR3

Either form may be a READ or WRITE, but neither may employ implied DO loops -- convert

these to explicit DO loops instead. The unit numbers may be integer variables instead of

integer constants. Non-MP variables and constants may be included in the list, in which

case they are handled using ordinary Fortran I/O.
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The first form is used for input and output of individual MP numbers (not entire

unsubscripted arrays) in ordinary decimal form. The digits of the number may span more

than one line. A comma at the end of the last line denotes the end of a MP number. Input

lines may not exceed 120 characters in length, but embedded blanks are allowed anywhere.

The exponent is optional in an input number, but if present it must appear appear first,

as in the following example:

10 " -4 x 3.14159 26535 89793 23846 26433 83279

50288 41971 69399 37510,

MPC numbers are input or output as two consecutive MPR numbers. The output of a MP

write operation is in the correct form for a subsequent MP read operation. By default, all

digits of a MP number are output. The user can control the number of digits output by

including a directive such as

CMP+ OUTPUT PKECISION 200

in the declaration section of any subprogram. It remains in effect until the end of file or

until another such directive is encountered.

The second form of READ/WRITE statement above is used to perform binary I/O of entire

MP arrays. Subscripted variables are not allowed here.

9. Accessing the "Machine Epsilon"

Many MP programs need to control the "machine epsilon" for performing comparisons.

Further, compatibility needs to be maintained with the original program. To this end, the

user can employ a special constant with name DPEPS, which must be set to a DP value

with a parameter statement in the subprogram that references it. Example:

DOUBLE PRECISION DPEPS

PARAMETER (DPEPS = 1D-16)

Whenever this name appears in a subprogram that contains MP variables, the translator

substitutes the MP "epsilon" value, which by default is 10 7-D, where D is the number of

digits of precision specified with the precision level directive mentioned above. DPEPS does

not need to be declared with a MP type directive. The MP epsilon value may be modified

(independent of the precision level directive) by inserting a directive such as

CMP+ EPSILON IE-200

in the declaration section of any subprogram (for instance, immediately following the pa-

rameter statement in which DPEPS is defined). It remains in effect until the end of file or

until another such directive is encountered.
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10. Accessing the Precision Level

Some MP programs may need to access the precision level -- for example so that

the first dimension of MP arrays (which is the number of mantissa words plus 4) can be

passed to a system routine. The number of mantissa words used for MP numbers (which

is approximately one seventh the number of decimal digits) may be accessed in the special

integer constant MPNWP. Whenever the name MPNWPoccurs in a subprogram that contains

MP variables, the translator automatically sets this parameter to the value of the MPCOMI

parameter NW.

11. Single Precision Scratch Space for the MPFUN Package

The maximum amount of SP scratch space in common block MPC0M3 (see the documen-

tation for the MPFUN package [1]), cannot be determined in advance by the translator

program. The MPFUN package allocates 1024 SP cells in this block, which for most pro-

grams is sufficient. If the "insufficient single precision scratch space" error is encountered

during execution of the resulting MP program, place a directive of the form

CMP+ SCRATCH SPACE 2000

at the beginning of the input file, before any program or subroutine statement, after the

precision level declaration. The number placed on this line should be at least the size

mentioned in the error message.

12. Other Restrictions and Limitations

A number of other restrictions and limitations apply to programs processed by the

translator. These restrictions are listed below. However, note that in almost every case

there is a simple change that can be made to the input program to make it acceptable to

this translation program, while retaining both its functionality and Fortran-77 compliance.

Many of these retrictions are merely good programming practice.

Non-MP statements, i.e. statements that do not contain any MP variables, are not

modified by this processor and are not subject to restrictions, except as noted in items 1

through 4.

1. Variable, common block and subroutine names beginning with DP and MP are reserved.

Except as described in this paper, names with these prefixes should not be used in

the input program.

2. A single IMPLICIT statement may be used to declare the initial letter(s) for only one

type. A single COMMONstatement may be used to declare only one common block,

although a common block may contain any number of both MP and non-MP variables

and arrays.

3. DATA statements and FORMAT statements may appear only after the end of the specifi-

cation section of the program, i.e. only after type declaration, DIMENSION statements,

COMMON statements, etc.
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4. ENTRY, typed FUNCTION (i.e.INTEGER FUNCTION), assigned GOTO, arithmetic IF, READ

or WRITE without parentheses,and PRINT statements are not ilowed. Please replace

these constructs, which in most cases are obsolescent, with more conventional iter-

natives: FUNCTION statements followed by type statements, normal subroutine calls,

computed or ordinary GOT0 statements, logical IF statements and normal READ or

WRITE statements, respectively.

5. Statement functions may not be used to define MP functions. Convert these into MP

function subprograms or subroutines.

6. MP variables may not appear in DATA statements. Convert these into parameter or

assignment statements. For example, a DATA statement can be used to initialize a

DP array, and then these DP values can be converted to MP and stored in a MP

array by means of a loop containing an assignment statement.

7. The logical operators .NOT., .EQV. and .NEQV. may not appear in a MP statement.

Rewrite such statements using .AND. and .0R. operators, or move such subexpres-

sions to a separate statement.

8. Complex constants [i.e. (3., 2.)] may not appear in MP statements. Either use
the intrinsic functions CMPLX or DCMPLX, or else assign such constants to CO or DC

variables in separate statements.

9. A MP statement may not be the terminal line of a DO loop. Place the line number

on a CONTINUE line immediately following the statement. If the line number is iso

the target of a GOTO, the DO loop must be changed to use a separate termini line

number.

10. Embedded blanks may not appear in Fortran keywords, line numbers, variable names,

comparison operators and logical operators. Exceptions: DOUBLE PRECISION, DOUBLE

COMPLEX, ELSE IF, END DO, END IF, GO TO are permitted.

11. Fortran keywords may not have mixed upper and lower case letters (i.e. FORmat).

12. Input code must be in the standard 72 column format. Comments up to 80 characters

long are correctly copied to the output file.

13. REAL, DATA, DO or CALL must be followed by a blank (or an asterisk, as in REAL*8).

Also, a blank must follow the line number in a DO statement.

14. If an integer constant is followed by a comparison or logical operator (i.e..LE. or

•AND. ), they must be separated by a blank.

15. Tab characters are not allowed -- convert these to blanks with a text editor.
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On the other hand, this program will correctly process code with the following features,

which do not comply with the Fortran-77 standard, provided the Fortran compiler being

used also supports such constructs:

1. Lower case Fortran keywords, variable names, common block names and subroutine

names are allowed.

2. Long variable names (up to 16 characters long) are permitted.

3. Character strings may be delimited with pairs of quotation marks ["] instead of

apostrophes ['].

4. The double complex (DC) data type is supported, including DC intrinsics.

5. The data types INTEGER*4, REAL*8, etc. are supported. REAL*8 is interpreted as

DP; COMPLEX*16 is interpreted as DC.

6. D0-ENDD0 constructs are permitted.

7. Recursive subroutine calls are permitted.

13. Error Checking

Approximately 100 error conditions are checked by the translator program, and if any

of these is encountered, an error message is output, together with the line number of the

statement in the input file where the error was detected. An attempt has been made to

cover the prohibited situations mentioned in this paper, as well as many violations of the

standard rules of Fortran. In some cases, certain possible Fortran errors are not checked by

the translator, because if they do occur, they will certainly be trapped when an attempt

is made to compile the output program.

One example of an error condition that is checked by the translator is any type mismatch

between the argument list of a reference to a subroutine or function and its definition

(provided both are in the same file). Such errors can easily occur when, for example, a

double precision constant is used as an argument, but the defining subprogram expects a

multiprecision value. These errors can also occur if the function name of a MP function is

not declared to be of type MP in the program unit where it is referenced.

Although this is certainly not a recommended programming practice, type mismatches

between argument lists do exist in some working Fortran programs. For example, some

codes pass a scratch array of type real to a subroutine when a complex scratch array is

expected. Because in some cases it may be difficult to remove type mismatches from an

existing code, and since the resulting code may work correctly anyway, a provision has

been made for the translator to toggle type error trapping on and off. This is done by

inserting one of the following directives in the declaration section of any program unit:

CMP+ TYPE ERROR 0N

CMP+ TYPE ERROR OFF
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It remains in effect until the end of file or until another such directive is encountered.

When type error trapping is disabled with the OFF option, a non-fatal warning message is

included in the output file for the programmer's information.

14. Examples of Translations

A number of fairly large programs have been successfully translated with this program.

These include the Linpack benchmark [6], both a real and a complex FFT benchmark

[2], a vortex analysis code [7], a Feigenbaum number calculation [5], an implementation

of Ferguson's PSOS integer relation algorithm [3], and an implementation of the RSA

public-key cryptosystem [8]. All appear to work correctly.
In most cases where the author had previously coded the application by hand using the

MPFUN routines, the performance of the translated code (using the FAST option) is not

significantly different. Thus it appears that in most cases there will not be a performance

penalty for using the translator. Partly this is due to the fact that in translating arithmetic

expressions, the translator program separately handles each of the many mixed mode cases,

as opposed to merely handling all cases in a stock fashion.

Here are a few examples of how the translator handles various Fortran constructs. In

the following, the FAST mixed mode option is in effect. IA and IB have type MPI, A, B,

C and D have type MPR, and X and Y have type MPC. A number of temporary variables

appear in the translated code. Those starting with MPD have type DP, those starting with

MPJ have type MPI, those starting with MPL have type logical, those starting with MPM

have type MPR, and those starting with MPZ have type MPC. The variable MPL02 is the

MP translation of DPL02 (i.e. log 2), MPEPS is the translation of DPEPS (i.e. the machine

epsilon), and MPNW4 has the value MPNWP + 4 (i.e. the precision level plus 4).

An expression with subscripted MP variables:

c = c + 2.DO * A(I) * (B(I) + 1.D0) ** 2

Translation:

CALL

CALL

CALL

CALL

CALL

CALL

CALL

MPMULD (A(I,I), 2.DO, O, MPMI)

MPDMC (1.DO, O, MPM3)

MPADD (B(I,I), MPM3, MPM2)

MPNPWR (SPS2, 2, MPM3)

MPMUL (MPMI, MPM3, MPM2)

MPADD (C, SPS2, MPMI)

MPEQ (SPSl, C)

A statement with mixed DP, IN, MPI and MPR entities, and a LOG function reference:

D = IA + 3.DO * LOG (C + i)

Translation:
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MPDI = 1

CALL MPDMC (MPDI, O, MPM2)

CALL MPADD (C, MPM2, MPMI)

CALL MPLOG (MPMI, MPL02, MPM2)

CALL MPMULD (MPM2, 3.DO, O, MPMI)

CALL MPADD (IA, MPMI, MPM2)

CALL MPEQ (MPM2, D)

A reference to the user-defined external MP function DOT:

C = DOT (A, 25)

Translation:

CALL DOT (A, 25, MPMI)

CALL MPEQ (MPM1, C)

A complex square root re%rence, with the specialfunction DPCMPL.

E = SQRT (DPCMPL (2.DO * S, S))

Translation:

CALL MPMULD (S, 2.DO, O, MPMI)

CALL MPMMPC (MPMI, S, MPNW4, MPZl)

CALL MPCSQR (MPNW4, MPZI, MPZ2)

CALL MPCEQ (MPNW4, MPZ2, E)

An IF statement involving MP variables (including the special variable DPEPS), along with

a WRITE statement:

IF (C .GT. O.DO .AND. D .LT. DPEPS) WRITE (6, *) C

Translation:

CALL MPDMC (O.DO, O, MPMI)

CALL MPCPR (C, MPMI, MPII)

MPLI = MPII .GT. 0

CALL MPCPR (D, MPEPS, MPII)

MPL2 = MPII .LT. 0

MPL3 = MPLI .AND. MPL2

IF (MPL3) THEN

CALL MPOirr (6, C, 120, MPAI)

ENDIF
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